Equilibrium spin current in graphene with Rashba spin-orbit coupling
نویسندگان
چکیده
The existence of a background spin current under thermodynamic equilibrium is an interesting phenomenon in the two-dimensional electron gas with Rashba spin-orbit coupling (RSOC). Here we study the equilibrium spin current (ESC) in graphene with RSOC. For an infinite graphene with uniform RSOC, we found that the ESC is proportional to λ(2) with λ the Rashba strength and mainly comes from the energy window [-λ, λ] near Dirac points. In the regime of energy far away from Dirac points, the λ(3) dependence as that in a normal two-dimensional electron gas is recovered. In a system with a normal graphene strip inserted between two Rashba graphene sheets, we found that the ESC can penetrate through the normal graphene layer (perpendicular to the interface). This unique effect can be understood by considering the spin-filtered scattering from the normal region to the RSOC region. The finding of the ESC through the normal region without RSOC advances the understanding of ESC and provides a new way to generate a pure spin current in graphene. For an experimentally accessible strength of Rashba spin-orbit coupling, the ESC remains over room temperature.
منابع مشابه
Trigonal warping and anisotropic band splitting in monolayer graphene due to Rashba spin-orbit coupling
We study the electronic band structure of monolayer graphene when Rashba spin-orbit coupling is present. We show that if the Rashba spin-orbit coupling is stronger than the intrinsic spin-orbit coupling, the low-energy bands undergo trigonal-warping deformation and that for energies smaller than the Lifshitz energy, the Fermi circle breaks up into separate parts. The effect is very similar to w...
متن کاملFull Valley and Spin Polarizations in Strained Graphene with Rashba Spin Orbit Coupling and Magnetic Barrier
We propose a graphene-based full valley- and spin-polarization device based on strained graphene with Rashba spin orbit coupling and magnetic barrier. The underlying mechanism is the coexistence of the valley and single spin band gaps in a certain Fermi energy. By aligning the Fermi energy in the valley and single spin band gaps, remarkable valley- and spin-polarization currents can be accessed.
متن کاملElectronic properties of graphene and graphene nanoribbons with 'pseudo-Rashba' spin-orbit coupling
We discuss the electronic properties of graphene and graphene nanoribbons including ‘pseudo-Rashba’ spin–orbit coupling. After summarizing the bulk properties of massless and massive Dirac particles, we first analyze the scattering behavior close to an infinite mass and zigzag boundary. For low energies, we observe strong deviations from the usual spin-conserving behavior at high energies such ...
متن کاملSpin-dependent Klein tunneling in graphene: Role of Rashba spin-orbit coupling
Within an effective Dirac theory the low-energy dispersions of monolayer graphene in the presence of Rashba spin-orbit coupling and spin-degenerate bilayer graphene are described by formally identical expressions. We explore implications of this correspondence for transport by choosing chiral tunneling through pn and pnp junctions as a concrete example. A real-space Green’s function formalism b...
متن کاملLandau levels and edge states in graphene with strong spin-orbit coupling
We investigate the electronic properties of graphene in a magnetic and a strain-induced pseudo-magnetic field in the presence of strong spin-orbit interactions (SOI). For a homogeneous field we provide analytical results for the Landau level eigenstates for arbitrary intrinsic and Rashba SOI, including also the effect of a Zeeman field. We then study the edge states in a semi-infinite geometry ...
متن کامل